E-mail: dbarlow(at)
Research Group:
Institution: CeMM

Full member of the DoktoratsKolleg RNA Biology from 2007 until 2013.
Full member of the Focus Regulatory RNA (SFB RNA-REG) from 2011 until 2015.


DK RNA Biology Alumni:
Daniel Andergassen: “Mapping the mouse Allelome reveals tissue-specific regulation”
Alexandra Kornienko: “Identification and variabilitiy analysis of long non-coding RNAs in human primary granulocytes”
Tomasz Kulinski: “Genomic imprinting in mouse extra-embryonic cell lineage in vitro and in vivo”
Federica Santoro: “Onset and maintenance of Airn non-coding RNA mediated imprinted expression in an in vitro embryonic stem cell model”
Philipp Günzl: “Macro lncRNA hallmarks analyzed by RNAseq”



Genomic imprinting – an entry point for the unexpected:

All mammals including human beings inherit equal numbers of genes from both their parents, but about 200 of these are ‘imprinted’ by one parent. The consequences of this is that although we have two parental copies of imprinted genes only one copy can be turned on, while the other is locked in a silent state. The study of imprinted genes has uncovered many unpredictable findings about what controls the on/off state of a gene. In particular, the Barlow lab has shown that a special class of inefficiently-spliced long non-coding RNA, known as a ‘macro’ ncRNA, act in cis to initiate silencing of imprinted genes. The human genome is known to contain vast numbers of long ncRNAs that are presumed to play a gene-regulatory role. The Barlow lab is now using RNA-seq combined with a recently developed pipeline to optimize the identification of the whole coding and non-coding transcriptome in mammalian cells, to study the role of long and macro ncRNAs in development and disease.